## Structure Reports

Online
ISSN 1600-5368

Deepak Chopra, ${ }^{\text {a }}{ }^{*}$ K. Nagarajan ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ HIKAL India Limited, Banerghatta Road, Bangalore 560 078,
Karnataka, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.082$
$w R$ factor $=0.157$
Data-to-parameter ratio $=11.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
# N -(3-Fluorophenyl)-9H-xanthen-9-ylideneamine 

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{FNO}$, the dihedral angle between the mean planes of the 9 H -xanthene moiety and the 3-fluorophenyl group is 82.5 (1) ${ }^{\circ}$. An intramolecular C$\mathrm{H} \cdots \pi$ interaction stabilizes the molecular conformation.

## Comment

Molecular organization and molecular interactions are the features that are responsible for molecules exhibiting different functional properties. An understanding of non-covalent interactions becomes essential for interpreting and predicting relationships between chemical structure and function (Hunter et al., 2001). Crystal engineering, via manipulation of hydrogen bonding, has attracted a lot of interest in the recent literature (Aakeröy, 1997; Desiraju, 2000). Weak intermolecular forces of the type $\mathrm{C}-\mathrm{H} \cdots \pi$ play an important role in various systems of biological and chemical interest (Nishio, 2004). Intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are responsible for molecules adopting a particular conformation in the solid state (Jennings et al., 2001). A structural study of the title compound, (I), has been carried out as a case study where there is no possibility of formation of hydrogen bonds and hence it is thought to be suitable for the study of weak interactions.


A view of (I) with the atom-labelling scheme is shown in Fig. 1. The $9 H$-xanthene unit is almost planar, as indicated by the torsion angles (Table 1). The bond angle C12-N1-C14 of $126.7(2)^{\circ}$ is greater than the ideal bond angle value of $120^{\circ}$ to avoid steric repulsion between atoms H 15 and H 1 . Rotation of the 3-fluorophenyl group takes place and this is favoured because it leads to the formation of an intramolecular C $\mathrm{H} \cdots \pi$ interaction (Table 2) involving H 1 , which stabilizes the molecular conformation (Fig. 1).

Received 8 November 2004 Accepted 15 November 2004 Online 20 November 2004


Figure 1
The molecular structure of (I), showing $40 \%$ probability ellipsoids. H atoms have been omitted for clarity, except for H1. The dashed line indicates the intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

## Experimental

Compound (I) was synthesized according to a procedure reported in the literature (Nagarajan et al., 1974). The compound was crystallized from a solution in ethyl acetate and hexane, by slow evaporation at $c a$ 278 K.

## Crystal data

## $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{FNO}$

$M_{r}=289.30$
Monoclinic, $P 2_{1} / n$
$a=14.175$ (3) А
$b=5.0634$ (9) $\AA$
$c=19.912$ (3) $\AA$
$\beta=102.794$ (4) ${ }^{\circ}$
$V=1393.6(4) \AA^{3}$
$Z=4$
$D_{x}=1.379 \mathrm{Mg} \mathrm{m}^{-3}$
MoKa radiation
Cell parameters from 757
reflections
$\theta=1.3-24.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange-yellow
$0.60 \times 0.60 \times 0.56 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector
$\quad$ diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S$; Sheldrick, 1996 $)$
$\quad T_{\min }=0.902, T_{\max }=0.949$
10501 measured reflections

2849 independent reflections
1600 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-17 \rightarrow 17$
$k=-6 \rightarrow 6$
$l=-24 \rightarrow 24$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.082$
$w R\left(F^{2}\right)=0.157$
$S=1.12$
2849 reflections
247 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ( $\AA \AA^{\circ}$ ).

| $\mathrm{N} 1-\mathrm{C} 12$ | $1.283(3)$ | $\mathrm{N} 1-\mathrm{C} 14$ | $1.403(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 14$ | $126.7(2)$ |  |  |
|  |  |  |  |
| $\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$ | $-6.1(5)$ | $\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 13$ | $1.7(4)$ |
| $\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$ | $1.4(4)$ | $\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15$ | $-82.4(4)$ |
| $\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 1$ | $-5.8(5)$ | $\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 11$ | $-0.8(4)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{H} 1 \cdots C g 1$ | $0.98(3)$ | $2.76(3)$ | $3.630(5)$ | $147(2)$ |

Cg1 is the centroid of the C14-C19 ring.
All H atoms were located in difference Fourier maps and refined isotropically. The $\mathrm{C}-\mathrm{H}$ bond distances are in the range 0.89 (3)1.08 (2) Å.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRFA-DST program. D. Chopra thanks CSIR, India, for a Junior Research Fellowship.

## References

Aakeröy, C. B. (1997). Acta Cryst. B53, 569-586.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2000). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Jennings, W. B., Farell, B. M. \& Malone, J. F. (2001). Acc. Chem. Res. 34, 885894.

Nagarajan, K., Kulkarni, C. L. \& Venkateswarlu, A. (1974). Indian J. Chem. 12, 247-251.
Nishio, M. (2004). CrystEngComm, 6, 130-158.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.


[^0]:    (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

